University / Academy: Menoufia University College / Institute: Faculty of Electronic Engineering Department: Computer Science and Engineering

Course Specification

1- Course basic information :			
Course Code: CSE 361	Course Title: Computer Architecture	Academic year: 2011/2012 Level (3) – Semester : 1	
University requirement	Teaching hours: Lecture	3 Tutorial 2 Lab 1	

2- Aim of the course	
	• To understand the hardware design and operation of digital computer.
	 computer. To teach the students the principles of computer architecture. To give an understanding of the principles of operation of computers and peripheral devices. To give an overview of the main families of microprocessors and their differences. To develop an appreciation of why computers are constructed as they are. To study the trade-offs between cost and performance in computer design.
	 To provide an introduction to computer processor and memory architectures, and to the design of personal computer systems. To provide an understanding of the architectural features of modern high performance computers.
3- Intended Learni	ng Outcomes:

A- Knowledge and	a2. Basics of information and communication technology (ICT).		
Understanding:	a3. Characteristics of engineering materials related to the		
	computer science and engineering.		
	a4. Principles of design including elements design, process		
	and/or a system related to specific computer science and		
	engineering.		
	a8. Current engineering technologies as related to computer		
	science and engineering.		
	a12. Contemporary engineering topics.		
	a13. Engineering principles in the fields of logic design,		
	circuit analysis, machine and assembly languages,		
	computer organization and architectures, memory		
	hierarchy, advanced computer architectures, embedded		
	systems, signal processing, operating systems, real-time		
	systems and reliability analysis.		
	a16. Related research and current advances in the field of		
	computer software and hardware.		
B- Intellectual Skills	b5. Assess and evaluate the characteristics and performance of		
	components, systems and processes.		
	b8. Select and appraise appropriate ICT tools to a variety of		
	engineering problems.		
	b13. Develop innovative solutions for the practical industrial		
	problems.		
C- Professional Skills	c1. Apply knowledge of mathematics, science, information		
	technology, design, business context and engineering		
	practice integrally to solve engineering problems.		
	c2. Professionally merge the engineering knowledge,		
	understanding, and feedback to improve design, products		
	and/or services.		
	c3. Create and/or re-design a process, component or system, and		
	carry out specialized engineering designs.		
	c13. Design and operate computer-based systems specifically		
	designed for business applications.		
D- General Skills	d1. Collaborate effectively within multidisciplinary team.		
	d4. Demonstrate efficient II capabilities.		
	d9. Refer to relevant literatures.		

4- Course Contents	Fundamentals of Computer Design - Memory Systems – Processor - Input- Output-Instruction Set Principles – Pipelining - Memory Hierarchy - Storage Systems: types of storage devices; bus systems - connections, protocols and standards		
5- Teaching and Learning Methods	 Lectures Tutorials Laboratory Research assignments 		
6- Teaching and Learning Methods for disable students	- NA		

7- Student Assessment

a- Assessment	Assessment - Weekly sheet exercises at class room Methods - Quizzes			
Methods				
	- Mid term, and final exams			
b- Assessment	- Exercise sheet/ Lab assignment :	Weekly		
Schedule	- Quizz-1: Week no 3			
	- Mid-Term exam:	Week no	8	
	- Quizz-2:	Week no	11	
	- Lab exam:	Week no	14	
	- Final – term examination:	Week no	15	
c- Weighting of	- Class tutorial and quizzes:	5 %		
Assessment	- Mid-term examination:	10 %		
	 Case study and/or practical exam: 	20 %		
	- Final – term examination:	60 %		
	- Other types of assessment: 5 %			
	Total	100 %		

8- List of text books and references:

a- Course notes	Lectures notes prepared in the form of a book authorized by the department.
b- Text books	William Stallings, "Computer Organization & Architecture: Designing for Performance", Sixth Edition, Pearson Education, Inc., 2003.
c- Recommended books	David A. Pattrson and John L. Hennessy, "Computer Organization & Design: The Hardware/Software Interface", Second Edition, Morgan Kaufmann Publishers, Inc., San Francisco, California,

	1998. M. Morris Mano, "Computer System Architecture", Third Edition, Prentice-Hall, Inc., 1993.		
	Barry B. Brey, "The Intel Microprocessors: Architecture, Programming, and Interfacing", Sixth Edition, Pearson Education, Inc., 2003.		
d- Periodicals, Web	None		
sitesetc			

Course contents - ILOs Matrix

Content Topics	Week	A- Knowledge &	B- Intellectual	C- Professional	D- General and
		Understanding	SKIIIS	and practical	transferable
				skills	skills
Fundamentals of	1	a2, a3		C3	d1
Computer Design -					
Processor - Input-	2, 3, 4	a3,,a12,a13	b5, b8	c1, c3	d1, d4
Output-Instruction					
Set Principles –					
Memory Systems –	5, 6, 7	a3, a4, a16	b8 , b13	c1, c2	d4, d9
Pipelining - Memory	9, 10,	a16	b5, b13	c2, c13	d1, d4
Hierarchy -	11				
Storage Systems:	12	a13, a16	b8	c13	d9
types of storage					
devices;					
-					
bus systems -	13, 14	a2, a3, a4, a8,	b5, b8 , b13	c1, c2, c13	d4, d9
connections,		a12, a13			
protocols and					
standards					

Course coordinator:

Head of Department:

Dr. Gamal M. Attiya

Prof. Dr. Nawal El-Feshawy

Date: / /